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angiogenesis via suppression of hypoxia-inducible factor-1α
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Abstract
Mitochondrial respiration is required for hypoxia-inducible
factor (HIF)-1α stabilization, which is important for tumor
cell survival, proliferation, and angiogenesis. Herein, small
molecules that inhibit HIF-1α protein stability by targeting
mitochondrial energy production were screened using the
Library of Pharmacologically Active Compounds and cell
growth assay in galactose or glucose medium. NNC 55-
0396, a T-type Ca2+ channel inhibitor, was selected as a hit
from among 1,280 small molecules. NNC 55-0396 sup-
pressed mitochondrial reactive oxygen species-mediated
HIF-1α expression as well as stabilization by inhibiting pro-
tein synthesis in a dose-dependent manner. NNC 55-0396
inhibited tumor-induced angiogenesis in vitro and in vivo by
suppressing HIF-1α stability. Moreover, NNC 55-0396

significantly suppressed glioblastoma tumor growth in a xe-
nograft model. Thus, NNC 55-0396, a small molecule
targeting T-type Ca2+ channel, was identified by the systemic
cell-based assay and was shown to have antiangiogenic activ-
ity via the suppression of HIF-1α signal transduction. These
results provide new insights into the biological network be-
tween ion channel and HIF-1α signal transduction.

Key message
& HIF-1α overexpression has been demonstrated in hypoxic

cancer cells.
& NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibited

HIF-1α expression via both proteasomal degradation and
protein synthesis pathways.

& T-type Ca2+ channel inhibitors block angiogenesis by
suppressing HIF-1α stability and synthesis.

& NNC 55-0396 could be a potential therapeutic drug can-
didate for cancer treatment.

Keywords Mitochondria . NNC 55-0396 . T-type Ca2+

channel . HIF-1α signal transduction . Angiogenesis

Introduction

Hypoxia-inducible factor (HIF)-1 is an oxygen-sensitive tran-
scription factor implicated in cancer biology, including the
process of angiogenesis [1, 2]. HIF-1 consists of an oxygen-
regulated subunit HIF-1α and a constitutively expressed sub-
unit HIF-1β. The stability of the HIF-1α subunit is regulated
by post-translational modifications, such as hydroxylation and
ubiquitination under hypoxic conditions [3]. In addition to
hypoxic conditions, HIF-1α is also regulated by cytokines,
growth factors, and other signaling molecules, such as insulin,
interleukin-1, tumor necrosis factor-alpha, mitogen-activated
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protein kinase, or PI3K in an oxygen-independent manner
[4–7]. The pivotal role of HIF-1α in cancer progression sheds
light on this transcription factor as a potential target protein for
cancer treatment.

Small molecules have often functioned as powerful probes
for exploring biological questions [8]. For instance, FK506, an
immunosuppressive agent, binds to FK506-binding protein
(FKBP) and taxol binds to microtubules for their respective
biological activity [9, 10]. Likewise, acriflavine was discov-
ered as an inhibitor of HIF-1 dimerization, resulting in sup-
pression of tumor growth and vascularization [11].
Terpestacin, a natural antiangiogenic small molecule, binds
to mitochondrial ubiquinol-cytochrome c reductase binding
protein (UQCRB) for its antiangiogenic activity, which re-
vealed the role of UQCRB in angiogenesis and mitochondrial
reactive oxygen species (ROS) signaling [12]. This binding of
small molecules to their target proteins has helped to provide
new insights into functions of the target proteins and finally
aided drug development.

Due to the role of HIF-1α in cancer development and other
diseases related to oxygen-sensitivity, new small molecules that
can suppress HIF-1α activity are promising candidates for
development of new therapeutic strategies. Targetingmitochon-
drial function in terms of reducing mitochondrial ROS has been
reported to affect HIF-1α protein stability under hypoxic con-
ditions [12–14]. Accordingly, small molecules that inhibit HIF-
1α by targeting mitochondria were screened using the Library
of Pharmacologically Active Compounds (LOPAC) and cell
growth assay in galactose or glucose medium. LOPAC, a
collection of 1,280 pharmacologically active compounds, is
often utilized in drug discovery research for successful identi-
fication of new small molecules in biological assays of interest
[15, 16]. Subsequently, suppression of cell growth in galactose
medium by such small molecules is an indication of the inhi-
bition of mitochondrial function [17]. Using this cell-based
screening system, NNC 55-0396 was identified as a potent
small molecule that suppressed HIF-1α signal transduction.
NNC 55-0396 was found to regulate hypoxia-induced HIF-
1α protein stability not only via proteasomal degradation but
also via protein synthesis. Moreover, it also significantly sup-
pressed tumor-induced angiogenesis and tumor growth in
mouse xenograft assays. Collectively, these results identify a
new chemical probe that can modulate HIF-1α signal transduc-
tion by targeting the T-type Ca2+ channel.

Materials and methods

Materials

LOPAC and NNC 55-0396 were purchased from Sigma Al-
drich (St. Louis, MO, USA). Kurtoxin was kindly provided by
Dr. JaeIl Kim, GIST, Korea. Anti-HIF-1α and PECAM-1

were purchased from BD Biosciences (San Jose, CA, USA).
Anti-CACNA1H, vascular endothelial growth factor (VEGF),
and tubulin were purchased from Santa Cruz Biotechnology
(Dallas, TX, USA), Abcam (Cambridge, UK), and Millipore
(Bilerica, MA, USA), respectively. Anti-HIF-1β and CACN
A1C were purchased from NOVUS Biologicals (Littleton,
CO, USA). Anti-hydroxy-HIF-1α, mammalian target of
rapamycin (mTOR), phospho-mTOR, p70S6K, and
phospho-p70S6Kwere purchased from Cell Signaling Tech-
nology (Beverly, MA, USA).

Cell culture and hypoxic conditions

Early passages (passages 4–8) of human umbilical vein endo-
thelial cells (HUVECs) were grown in endothelial growth
medium (EGM)-2 (Lonza, Walkersville, MD, USA) supple-
mented with 10 % fetal bovine serum (FBS) (Invitrogen,
Grand Island, NY, USA). HepG2 (human liver carcinoma)
and U87-MG (human glioblastoma) cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM) and MEM
(Invitrogen) containing 10 % FBS. All cells were maintained
at 37 °C in a humidified 5 % CO2 incubator. For hypoxic
conditions, small molecules were pretreated 1 h, and cells
were incubated for indicated time with 5 % CO2 and 1 % O2

balanced with N2 in an anaerobic chamber after overnight
serum starvation (Forma, Marietta, OH, USA).

Cell growth assay in the glucose or galactose medium

For the cell growth assay, HepG2 cells were maintained in
high-glucose medium and then transferred to glucose-free
medium supplemented with 10 mM galactose and incubated
for at least 1 week. HepG2 cells were then seeded in 96-well
plates at a concentration of 2000 cells/well. LOPAC com-
pounds were treated individually to the cells to identify com-
pounds that inhibited cell proliferation. Cells were grown for
72 h and growth was analyzed using the 3-(4,5-
dimehylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT, Sigma-Aldrich) colorimetric assay [18].

T-type Ca2+ channel RNA interference and reverse
transcriptase–polymerase chain reaction analysis

Human CACNA1H-specific small interfering RNA (siRNA)
(siCACNA1H) was synthesized by Genolution Pharmaceuti-
cals, Inc. (Seoul, South Korea). The sense and antisense
sequences of this siRNA were 5′-GUG CGA CGC AAG
UAC AAC UUU-3′ and 5′-AGU UGU ACU UGC GUC
GCA CUU-3′, respectively. For depletion of CACNA1H
mRNA, HepG2 were transfected with either scrambled, neg-
ative, or CACNA1H siRNA using Lipofectamine 2000 trans-
fection reagent (Invitrogen) according to the manufacturer’s
instructions. CACNA1H and CANCA1C mRNA were
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validated by reverse transcriptase–polymerase chain reaction
analysis using primers specific for CACNA1H (sense, 5′-TCG
AGG AGG ACT TCC ACA AG-3′; antisense, 5′-TGC ATC
CAG GAATGG TGA G-3′) and CACNA1C (sense, 5′-GCC
GAA GAC ATC GAT CCT GA-3′; antisense, 5′-GAA AAT
CAC CAG CCA GTA GAA GA-3′).

Measurement of mitochondrial ROS

Mitochondrial ROS levels were measured using a
MitoSOX™ Red mitochondrial superoxide indicator
(Invitrogen). Once in the mitochondria, the MitoSOX™ Red
reagent is oxidized by superoxide and emits red fluorescence.
After incubation withMitoSOX™Red (5 μM) for 10min, the
cells were washed with washing buffer, and the fluorescent
images were obtained using a microscope (IX71, Olympus),
and the fluorescence intensity was quantified by Image J
software (National Institute of Health, Bethesda, MD, USA).

In vitro tumor cell-induced angiogenesis assay

Tumor cell-induced capillary tube formation and chemo-
invasion by HUVECs were assessed using tumor cell condi-
tioned medium (CM). HepG2 cells were plated in 12-well
culture plates and then serum-starved overnight. Serum-starved
HepG2were pretreated with NNC 55-0396 and incubated under
hypoxic conditions. CM was collected after 16 h and concen-
trated by ultra-centrifugation. Subsequently, in vitro angiogene-
sis assays using CM were performed as described previously
[12]. Invaded cells and tube formations were observed under a
microscope and photographed at ×100 magnification.

Western blot analysis

Cell lysates were separated by 10 % sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE), and the sepa-
rated proteins were transferred to polyvinylidenedifluoride
(PVDF) membranes (Millipore) using standard electroblotting
procedures Blots were blocked and immunolabeled overnight at
4 °C with primary antibodies against HIF-1α, hydroxy-HIF-1α,
HIF-1β, CACNA1C, CACNA1H, tubulin, phospho-mTOR,
mTOR, phospho-p70S6K, and p70S6K. Immunolabeling was
visualized using an ECL kit (Amersham, Buckinghamshire,
UK) according to the manufacturer’s instructions.

Measurement of VEGF by ELISA

The VEGF concentration in media from NNC 55-0396-
treated cells for 16 h was determined using a VEGF Immu-
noassay kit (R&D systems, Minneapolis, MN, USA) accord-
ing to the manufacturer’s instructions. The results were
expressed as concentration of VEGF relative to the total
amount of VEGF from each well.

Chorioallantoic membrane assay

The chorioallantoic membrane (CAM) assay was performed
as described previously [14]. Fertilized chick eggs were kept
in a humidified incubator at 37 °C for 4 days. About 4–5 mL
of egg albumin was removed with a hypodermic needle,
allowing the CAM and yolk sac to drop away from the shell
membrane. On day 5, CMwith or without NNC 55-0396 were
loaded on thermanox coverslip (NUNC, Rochester, NY, USA)
and were applied to the CAM surface. Two days later, 1 mL of
Intralipose (Greencross Co, Korea) was injected beneath the
CAM. The membrane was observed under a microscope and
photographed at ×20 magnification.

In vivo mouse tumor xenograft assay

Four-week-old female BALB/c-nu/nu mice were purchased
from Narabio (Seoul, Korea). Animal care and experiments
were carried out according to the guidelines of the Korean Food
and Drug Administration. Protocols were reviewed and ap-
proved by the Institutional Review Board of Severance Hospi-
tal, Yonsei University, College of Medicine (09-013). After
acclimatization for 1 week, 3×107 U87-MG cells in 100 μL
phosphate-buffered saline (PBS)/Matrigel (1:1) were subcuta-
neously injected into the dorsal flank of athymic nude mice.
When the mean size of tumors was between 80 and 120 mm3,
NNC 55-0396 was administered intraperitoneally to the mice at
doses of 10 and 20 mg/kg, every 2 days. Tumor volume and
body weight of mice were measured every 4 days. Tumor
volumes were measured with Vernier calipers, using the for-
mula π/6×length×width×height. Twenty days after treatment,
the mice were killed, and the tumors were excised, weighed,
and fixed in paraformaldehyde for further analysis [19].

Immunohistochemistry

Xenograft tumors were fixed overnight in 4 % paraformalde-
hyde. Paraffin sections (4 μM thick) were deparaffinized and
rehydrated. The sections were boiled in 10 mM citrate buffer
(pH 6.0) and blocked in 3.4 % hydrogen peroxide for 15 min.
The slides were incubated overnight at 4 °Cwith the following
dilutions of primary antibodies: anti-HIF-1α and VEGF. After
washing with PBS, the specimens were incubated with bio-
tinylated secondary antibody for 1 h and streptavidin peroxi-
dase at room temperature for 30 min. Finally, the specimens
were visualized using a diaminobenzidine reagent kit (Vector
Laboratories, Burlingame, CA, USA). The immunostained
sections were counterstained with hematoxylin. Cryosections
(10 μM thick) were incubated overnight at 4 °C with
PECAM-1 primary antibody. After washing with PBS, the
specimens were incubated with Alexa Fluor 647 anti-rat sec-
ondary antibody for 1 h.
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Statistical analysis

Results are expressed as the mean±standard error (SE). Stu-
dent’s t test was used to determine statistical significance
between the control and test groups. A p<0.05was considered
statistically significant.

Results

Small molecule screening for inhibitors that suppressed
mitochondrion-mediated HIF-1α protein stability

To identify new bioactive small molecules that affect mitochon-
drial function, we used small molecules from LOPAC and the
cell growth assay with glucose or galactose medium [17]. The
effect of small molecules on cell growthwas analyzed by relative
cell growth in glucose versus galactose medium (Fig. 1a, left),

and the highest inhibition rates 100 compounds were assigned a
Sglu/gal score, defined as the log ratio of cell growth in glucose
divided by that in galactose (Fig. 1a, right). The top 100 com-
pounds that inhibited cell growth in galactose medium by possi-
bly modulating mitochondrial function showed positive Sglu/gal
scores. Since regulation of mitochondrion-mediated HIF-1α
protein stability during hypoxia is important for tumor progres-
sion, the effect of hits on HIF-1α protein stability was evaluated.
From 100 compounds, two hits were identified, which are T-type
Ca2+ channel blockers. These two compounds (NNC 55-0396
and mibefradil) suppressed hypoxia-induced HIF-1α protein
stability with no effect on HIF-1β stability (Fig. 1b). Notably,
mibefradil is a Ca2+ channel antagonist that inhibits both T-type
and high-voltage-activated Ca2+ channels, whereas NNC 55-
0396, a derivative of mibefradil, has a selective inhibitory effect
on T-type Ca2+ channel (Fig. 1c, d) [20]. Accordingly, the studies
that followed focused on the activity of NNC 55-0396 on HIF-
1α protein stability.
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Fig. 1 Screening for mitochondrion-mediated angiogenesis inhibitors
with LOPAC. a Results from cell growth assay in galactose versus
glucose media. In the case of 100 compounds, inhibition of cell growth
in glucosemediumwas 150% higher than that in galactose medium (left).
The logarithm of the cell growth in glucose versus galactose provides a
summary statistic (Sglu/gal) for each compound. The highest inhibition

rates 100 compounds plotted by Sglu/gal (right). b Effects of T-type Ca2+

channel inhibitors on HIF-1α and HIF-1β protein stability. Tubulin was
used as an internal control. Nor normoxia, Hyp hypoxia, NNC NNC55-
0396,Mibemibefradil. ***p<0.001. Each value represents the mean±SE
from three independent experiments. c Structure of NNC55-0396. d
Structure of mibefradil
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T-type Ca2+ channel specifically regulates HIF-1α protein
stability

The functional role of Ca2+ signaling in HIF-1α signal trans-
duction has been recently highlighted. Recent reports demon-
strated that Ca2+ signaling stimulates translation of HIF-α
during hypoxia, and the activation of HIF-1α transcriptional
activity by Ca2+ signal was evaluated [21, 22]. However, the
mechanism of Ca2+ channel-mediated regulation of HIF-1α
protein stability during hypoxia remains unclear. To address
this, effects of Ca2+ channel modulators on HIF-1α protein
stability were investigated in this study. First, HepG2 cells
were treated with T- and L-type Ca2+ channel inhibitors under
conditions of hypoxia. Notably, HIF-1α protein stability was
selectively inhibited by the T-type Ca2+ channel inhibitors
NNC 55-0396 (NNC), mibefradil (Mibe), and kurtoxin
(Kur) (Fig. 2a). Next, the cells were treated with T-type
(CACNA1H) and L-type (CACNA1C) Ca2+ channel antibod-
ies. T-type Ca2+ channel antibody inhibited HIF-1α protein
stability (Fig. 2b). Finally, the role of T-type Ca2+ channel in
HIF-1α protein stability was investigated via genetic

knockdown using T-type Ca2+ channel siRNA. As shown in
Fig. 2c, knockdown of T-type Ca2+ channel suppressed
hypoxia-induced HIF-1α protein stability. In addition, an
increase in the expression level of T-type Ca2+ channel subunit
was induced by hypoxia, whereas the L-type Ca2+ channel
subunit was not affected (Fig. 2d) [23]. This increase in T-type
Ca2+ channel levels indicates that it has a functional role in cell
response to hypoxia. Collectively, these results demonstrate
that HIF-1α protein stability is selectively regulated by T-type
Ca2+ channel activities during hypoxia.

NNC 55-0396 affected HIF-1α protein stability
through proteasomal degradation and HIF-1α protein
synthesis

Effect of NNC 55-0396 on HIF-1α protein stability was
examined in detail, since NNC 55-0396 did not affect HIF-
1α mRNA levels (Fig. 3a). The mitochondrion is a major site
of cellular ROS generation during hypoxia, and the induction
of mitochondrial ROS has been reported as a key factor for
hypoxia-induced stabilization of HIF-1α [24, 25]. First, the
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inhibition of mitochondrial function by NNC 55-0396 was
investigated using a cell growth assay in galactose medium.
NNC 55-0396 exhibited stronger inhibitory effects on cell
growth in galactose medium than in glucose (Fig. 3b). Next,

the mitochondrial ROS levels in HepG2 cells were evaluated
using MitoSOX, a red mitochondrial superoxide indicator.
NNC 55-0396 was found to significantly suppress the gener-
ation of hypoxia-induced mitochondrial ROS (Fig. 3c). To
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**p<0.01; ***p<0.001. Each value represents the mean±SE from
three independent experiments
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investigate whether NNC 55-0396 affects HIF-1α protein
stability by suppressing mitochondrial ROS, HIF-1α half-life
using cycloheximide (CHX) and hydroxyl-HIF-1α stability
were examined. As shown in Fig. 3d, when HepG2 cells were
pretreated with 1 μM NNC 55-0396, HIF-1α half-life de-
creased from >80 min to <70 min. NNC 55-0396 also in-
creased the hydroxylation of HIF-1α that is related to VHL E3
ligase interaction (Fig. 3e). To further verify whether NNC 55-
0396 inhibits HIF-1α protein stability by suppressing mito-
chondrial ROS generation, the effect of NNC 55-0396 on
desferrioxamine (DFO)-induced accumulation of HIF-1α
was investigated. DFO, an iron chelator that inhibits proline
hydroxylase (PHD) function by binding free Fe2+, does not
require mitochondrial ROS [26]. Notably, NNC 55-0396 also
inhibited the stabilization of HIF-1α with DFO treatment
(Fig. 3f). The effect of NNC 55-0396 on HIF-1α protein
synthesis using MG132 was evaluated. Treatment with NNC
55-0396 under hypoxia in the presence of MG132 exhibited a
decrease in ubiquitinylated HIF-1α protein levels (Fig. 3g).

NNC 55-0396 also repressed the phosphorylation of mTOR
and p70S6K that modulate translation and synthesis of HIF-
1α (Fig. 3h). In addition, NNC 55-0396 decreased the expres-
sion level of VEGF, one target of HIF-1α in Fig. 3i. Collec-
tively, these results imply that NNC 55-0396 suppresses HIF-
1α protein stability through both protein degradation and
synthesis pathways.

NNC 55-0396 inhibits tumor-induced angiogenesis both
in vitro and in vivo

Under hypoxic conditions, HIF-1α translocates into the nu-
cleus with HIF-1β and activates the transcription of target
genes, such as VEGF, which promotes angiogenesis [27].
Accordingly, the inhibitory activities of NNC 55-0396 on
the tumor-induced angiogenic phenotypes of HUVECs were
assessed in vitro and in vivo. First, a chemo-invasion assay
was conducted on serum-starved HUVECs using tumor cell-
CM with or without NNC 55-0396 treatment. NNC 55-0396
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Fig. 4 Effect of NNC 55-0396 on tumor-induced angiogenesis. a Effect
of NNC55-0396-treated CM on invasion by HUVECs. **p<0.01;
***p<0.001. Each value represents the mean±SE from three
independent experiments. Scale bar, 100 μm. b Inhibitory effect of
NNC 55-0396-treated CM on tube formation by HUVECs. Arrows
indicate broken tubes formed by tumor CM-induced HUVECs.
**p<0.01; ***p<0.001. Each value represents the mean±SE from

three independent experiments. Scale bar, 100 μm. c Antiangiogenesis
activity of NNC 55-0396 in vivo. CAM was treated with CM derived
from HepG2 cells cultured with or without NNC 55-0396. Arrows
indicate inhibition of neovascularization by CAM. The data shown are
representative of three independent experiments and calculations were
based on the proportion of positive eggs relative to the total number of
eggs tested (positive eggs/total eggs). Scale bar, 1 mm
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inhibited tumor-induced tube formation by HUVECs in a
dose-dependent manner (Fig. 4a). The effect of NNC 55-
0396 on tumor-induced tube formation by HUVECs was
investigated, and NNC 55-0396 showed inhibitory effects on
tube formation with no cytotoxic effects (Fig. 4b). Next, the
in vivo inhibitory effect of NNC 55-0396 on tumor-induced
angiogenesis was also investigated using the chick embryo
chorioallantoic membrane (CAM) assay. As shown Fig. 6c,
hypoxia-induced CM-treated CAMs showed strong induction
of new capillaries from the existing vascular network, whereas
NNC 55-0396-treated CAMs showed weak angiogenic activ-
ity during CAM development without any sign of thrombosis
or hemorrhage. Collectively, these data demonstrate that NNC
55-0396 potently inhibits in vitro and in vivo tumor-induced
angiogenesis.

NNC 55-0396 inhibits tumor growth in a tumor xenograft
mouse model

The antitumor effect of NNC 55-0396 was measured using a
mouse tumor xenograft model. U87-MG cells (human glioblas-
toma), which are a highly lethal type of cancer cells that exhibit
striking angiogenesis with elevated expression of VEGF, were
used in this assay [28]. BALB/c-nu/nu mice were inoculated
with 3×107 U87-MG cells, and the mice were intraperitoneally
treated with either a vehicle or NNC 55-0396. The representa-
tive gross images of tumors are shown in Fig. 5a. NNC 55-
0396 treatment (10 and 20 mg/kg) reduced both the volume
(Fig. 5b) and weight (Fig. 5c) of xenograft tumors. In addition,
NNC 55-0396 did not affect weight or induce liver toxicity in
mice (data not shown). Immunohistochemical analysis was
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Fig. 5 Effect of NNC 55-0396 on xenograft tumors. a Five athymic nude
mice bearing glioblastoma consisting of U87-MG cells were treated with
vehicle or NNC 55-0396 (10 and 20 mg/kg). Gross images showing
representative cases treated with NNC 55-0396. b Tumor volumes of
three groups (n=5) after 20 days. c The weight of tumors obtained from
mice treated with the vehicle or NNC 55-0396 was measured using an
electronic balance. d Effect of NNC 55-0396 on the expression levels of
HIF-1α, VEGF, and PECAM-1 in xenograft tumors. Paraformaldehyde-
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VEGF, and PECAM-1 antibodies. Red arrows indicate HIF-1α
expression in the nucleus. Blue arrows indicate the inhibition of HIF-
1α expression in the nucleus. Microvessel density was measured by
counting the number of positive structures in three random fields.
Original magnification of DAP staining images (HIF-1α and VEGF):
×400. Scale bar, 100 μm. Original magnification of fluorescence images
(PECAM-1): ×200. Scale bar, 100 μm. **p<0.01; ***p<0.001
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performed to confirm the effect of NNC 55-0396 on xenograft
tumors. HIF-1α, VEGF, and PECAM-1 expression levels in
the xenograft tumors were significantly reduced by NNC 55-
0396 treatment (Fig. 5d).

Discussion

HIF-1α is a key transcription factor for angiogenesis, which is
a pivotal step in cancer development [1, 2, 29]. Therefore,
blocking HIF-1α activity is a promising strategy for cancer
therapy. HIF-1α activation during hypoxia is a multistep
process involving HIF-1α protein stability, α and β subunit
dimerization, nuclear translocation, binding to HRE elements,
and the formation of active transcriptional complexes [27]. In
the present study, a new antiangiogenic small molecule, NNC
55-0396, which suppressed HIF-1α protein stability by
inhibiting both protein degradation and synthesis, was
identified.

Recent studies indicate that Ca2+ plays a key role in the
hypoxic cellular response and an increase of Ca2+ level was
observed in endothelial cells during hypoxia [30, 31]. In
particular, T-type Ca2+ channel activity increases with chronic
hypoxia [23, 32, 33]. In addition, Ca2+ activation by phospho-
lipase C (PLC) and mTOR pathways contribute to the stabi-
lization of HIF-1α protein by intermittent hypoxia [34]. How-
ever, a correlation between Ca2+ channel and HIF-1α protein
stability during hypoxia is not clear. Although cilnidipine, an
L-type Ca2+ channel inhibitor, has been shown to inhibit HIF-
1α protein stability, its effect did not depend on blocking of
the L-type Ca2+ channel [35]. Our study demonstrated that T-
type Ca2+ channel inhibitor, NNC 55-0396 inhibited angio-
genesis by suppressing HIF-1α protein stability. This obser-
vation is consistent with in vitro and in vivo angiogenesis
assays as well as in vivo mouse xenograft model assays
(Fig. 6).

In the present study, T-type Ca2+ channel inhibitors (NNC
55-0396, mibefradil, and kurtoxin) suppressed hypoxia-
induced HIF-1α protein stability. NNC 55-0396 showed
not only inhibitory activities with respect to mitochondrial-
mediated HIF-1α protein stability but also inhibition of HIF-
1α protein stability by blocking protein synthesis de novo.
Therefore, NNC 55-0396 effects on HIF-1αwere attributed to
inhibition of proteasomal degradation and protein synthesis.
However, NNC 55-0396 and kurtoxin did not show the same
effects on cell growth in galactose or glucose medium.
Kurtoxin did not inhibit cell growth in galactose medium at
doses that affected HIF-1α protein stability (unpublished re-
sult). These data suggest that the mitochondrion-mediated
inhibitory activities might be intrinsic characteristics of NNC
55-0396. To elucidate the effects on mitochondria by NNC
55-0396, mitochondrial oxygen consumption rate (OCR) and

ATP levels on mouse myoblast C2C12 were measured, and
NNC 55-0396 showed the inhibitory activities on mitochon-
drial OCR and ATP levels (unpublished result). Therefore, the
further studies on the mitochondrial function on HepG2
are necessary to assess mode of action of NNC 55-
0396. The mechanism by which T-type Ca2+ channel
inhibition causes mitochondrion-mediated suppression of
HIF-1α protein stability remains elusive, but this study
newly demonstrated that T-type Ca2+ channel inhibition
by pharmacologically and genetically is responsible for
decreased HIF-1α protein stability and inhibition of
angiogenesis. Moreover, NNC 55-0396 inhibited tumor-
induced angiogenesis in vitro and in vivo by suppress-
ing HIF-1α stability. It is noteworthy that NNC 55-0396
significantly decreased highly malignant and HIF-1α-
dependent glioblastoma tumor growth in a xenograft
model.

Collectively, NNC 55-0396 is newly identified as a novel
angiogenesis inhibitor by phenotypic screening and bio-
logical validation methods. Furthermore, these results
provide new insights into the mechanisms of HIF-1α
protein stability that involve T-type Ca2+ channel inhibition.
These findings suggest that the regulation of the T-type Ca2+

channel could be a new therapeutic strategy for improving
cancer treatment efficacy.

NNC 55-0396

VEGF

HIF-1α

[O2]

Mitochondria

Angiogenesis

T-type Ca2+ Channel

Tumor cell

VEGF
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Fig. 6 Role of T-type Ca2+ channel in HIF-1α signal transduction. The
model suggests that T-type Ca2+ channel is one of the mediators of HIF-
1α stabilization in tumor cells and its small molecule blocker, NNC 55-
0396, inhibits mitochondrial ROS-mediated HIF-1α signal transduction
and tumor-induced angiogenesis
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